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Abstract 

 

In non-contiguous allocation, a job request can be split into smaller parts that are 

allocated possibly non-adjacent free sub-meshes rather than always waiting until a 

single sub-mesh of the requested size and shape is available. Lifting the contiguity 

condition is expected to reduce processor fragmentation and increase system 

utilization. However, the distances traversed by messages can be long, and as a result 

the communication overhead, especially contention, is increased. The extra 

communication overhead depends on how the allocation request is partitioned and 

assigned to free sub-meshes. In this research, a new non-contiguous processor 

allocation strategy, referred to as A Compacting Non-Contiguous Processor 

Allocation Strategy (CNCPA), is suggested for the 2D mesh networks. In the 

proposed strategy, a single job is compacting into more than one free location within 

the allocated processors, where the remaining available processors (free processors) 

form a large sub-mesh in the system. To evaluate the performance improvement 

achieved by the proposed strategy and compare it against well-known existing non-

contiguous strategies, we conducted extensive simulation experiments under the 

assumption of wormhole routing and the communication patterns, one-to-all, random 

and near neighbor. The results show that the proposed strategy eliminates both the 

internal and external fragmentation and reduce the communication overhead and 

hence improves performance in terms of job turnaround time and system utilization. 
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Chapter 1 

Introduction  

 
In recent years, parallel computers have become very popular for solving large-scale 

computationally intensive problems [20, 32]. Parallel computing is a form of 

computation in which many calculations are carried out simultaneously. In parallel 

computing, we can save time, solve larger problems, and reduce cost by using 

multiple "cheap" computing resources instead of paying for time on a supercomputer 

[20]. 

 

A parallel computer is defined as a set of processors that cooperate together in order 

to find a solution for the computation problem. Parallel computers solve problems 

relatively quickly when compared to conventional computers [32, 38, 39].  

 

Parallel computers are divided into two classes: (1) parallel computers with shared 

memory and (2) parallel computers with distributed memory [38]. In shared memory 

computers, also known as multiprocessors, all processors communicate together via a 

shared memory. On the other hand, in distributed memory computers, also known as 

multicomputers, processors communicate by means of interchanging messages 

through an interconnection network [39]. 

 

An interconnection network is a network that transports data between individual 

components of a parallel computer to accomplish tasks collectively. The network 

consists of many elements including buffers, channels, switches, and controllers that 

work together to provide and deliver data. Interconnection networks can be 

categorized into two main categories: direct interconnection networks and indirect 

interconnection networks [45, 39]. 

In direct interconnection networks, also called point-to-point networks, each node has 

a point-to-point connection to one or more nodes that are called neighbors, allowing 

for direct communication between these nodes. Examples of direct networks are the 

mesh [1, 34], -ary -cube [28, 34, 39], and hypercube [34, 39]. These examples are 
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common direct interconnection networks that have been implemented in commercial 

and experimental machines [34, 39]. In indirect networks, multiple intermediate 

stages of switches are used to interconnect the nodes of a multiprocessor. Examples of 

indirect networks include the crossbar, bus, and multistage interconnection networks 

[39]. 

 

Direct interconnection networks have been extensively employed in large-scale 

multicomputers because of their scalability. They can be scaled up by adding nodes 

and channels based on the predefined network structure [1, 39]. Moreover, direct 

interconnection networks are able to exploit communication locality (near neighbor 

communication) that is exhibited by many real-world applications. 

 

A 2D mesh interconnection network is a mesh-connected multicomputer, with 

processors having the order of nodes in the network, and point-to-point that connects 

each node to its neighbors. Mesh interconnection network is a special case of -ary -

cube networks as the number of dimensions,  is two [51].  

 

Figure 1.1 shows an example of a  2D mesh, where allocated processors are 

denoted by black circles and free processors are denoted by white circles. 

Allocated node

Free node

 
Figure 1.1: An example of a 6X5 2D mesh 

 

Mesh multicomputers are suitable for different applications such as matrix 

computations, image processing and problems whose task graphs can be embedded 

naturally into the mesh. Examples of parallel computers that use mesh as an 

interconnection network include Tera Computer, Cray T3D, MIT J-Machine and the 

IBM BlueGene/L [5, 38, 39]. 
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1.1. Processor Allocation 

 

Processor allocation and job scheduling are critical for exploiting the full computing 

power of a multicomputer. Job scheduling involves the scheduling discipline used at 

the job level [37, 48]. It controls the selection of the next job for which processors are 

to be allocated. Processor allocation involves the assignment of a collection of 

processors to a parallel job with the goal of maximizing utilization and minimizing 

processor fragmentation over a stream of jobs [28, 37].  

 

Processor allocation strategies are divided into two categories: contiguous and non-

contiguous. In contiguous allocation, jobs are allocated distinct contiguous processor 

sub-meshes for the duration of their execution. Contiguous allocation has the problem 

of processor fragmentation [28, 30, 40, 42]. 

 

Processor fragmentation can be classified into internal and external fragmentation. 

Internal fragmentation occurs when more processors are allocated to a job more than 

it requires [10, 28, 29, 46, 49]. When a job is assigned more processors than it 

requires, the extra allocated processors are not used for actual computation, instead 

they are wasted. External fragmentation occurs when a sufficient number of 

processors are available to satisfy a request, but they cannot be allocated because they 

are not contiguous for example [29]. Figure 1.2 shows the internal fragmentation of 2 

processors, and figure 1.3 shows the external fragmentation of 4 processors assuming 

that the contiguous allocation algorithm is applied. 

A job requests 2X1 

submesh and is allocated 

4 processors

 
Figure 1.2: An internal fragmentation of 2 processors  

 



www.manaraa.com

4 

A job requests a 

contiguous 2X2 

submesh

 
Figure 1.3: An external fragmentation of 4 processors assuming that the contiguous allocation 

algorithm is applied 

 

 

A lot of research has been carried out to solve the problem of external fragmentation. 

For example, non-contiguous allocation has been considered [10, 12, 29, 39, 46, 53]. 

In non-contiguous allocation a job can be executed on multiple disjoint smaller sub-

meshes rather than waiting until a single sub-mesh of the requested size becomes 

available [10, 12, 29, 39, 42, 46, 53]. Non-contiguous allocation outperforms 

contiguous allocation because it can minimize the external fragmentation [39]. 

Although non-contiguous allocation increases message contention inside the network, 

dropping the contiguity condition can reduce processor fragmentation and increase 

system utilization [39]. In general, the main goal of any processor allocation strategy 

is to reduce the job turnaround time and to maximize system utilization [29, 29, 40], 

where the turnaround time is the time that the job spends in the mesh system from 

arrival to departure, whereas the system utilization is the percentage of processor that 

are utilized over time [39, 45]. 
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1.2. Motivation 

 

Previous researchers recommended that a new non-contiguous allocation strategy for 

mesh-connected multicomputers is needed [10, 29, 39, 40, 46]. The existing non-

contiguous allocation algorithms [10, 12, 30, 54] suffer from several problems such as 

external fragmentation, internal fragmentation, and message contention inside the 

network [10, 29, 39, 53]. Furthermore, allocation of processors to job requests is not 

based on free contiguous sub-meshes as in [10, 29]; but rather on artificial predefined 

geometric or arithmetic patterns. For example, in [10] ANCA subdivides job requests 

into two equal parts, and the subparts are successively subdivided in a similar fashion 

if allocation fails for any of them. In [29], MBS bases partitioning on a base-4 

representation of the number of processors requested, and partitioning in Paging [29] 

is based on the characteristics of the page, which is globally predefined independently 

from the request. Hence these strategies may fail to allocate an available large sub-

mesh, which in turn can cause degradation in system performance, such as the 

turnaround times of jobs [10, 29, 39]. In [41], GABL is based on available processors, 

regardless of their position in the mesh system which may allocate a job to sub-

meshes that are far apart from each other in the mesh system which increases the 

communication overhead and thus affects the performance in terms of turnaround 

time [29]. Figures 1.4 and 1.5 show an example of a  2D mesh. In figure 1.4, the 

job requests a  sub-mesh, and this job request is not allocated contiguously 

because there is no available sub-mesh of size  in the mesh system. According to 

the GABL strategy, the job request is divided into two sub-requests, the first one 

is , which is allocated to available sub-mesh as shown in figure 1.5, and then the 

second sub-request  is allocated in another sub-mesh [29]. 

A job requests 5X1 

submesh

 

Figure 1.4: A job requests 5X1 2D sub-mesh in 4X4 mesh 



www.manaraa.com

6 

A job request is divided into 

two sub-requests

 First one :4X1 sub-request 

Second one :1X1 sub-request

F
ir
s
t 

a
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c
a

ti
o

n

Second 

allocation

4X1 

submesh
1X1 

submesh

 

Figure 1.5: a job request 5X1 is divided into two sub-requests in GABL allocation algorithm 

 

 

1.3. Thesis Statement 

 

All current allocation strategies used in mesh-connected multicomputers can be 

classified into two categories: contiguous and non-contiguous. The existing 

contiguous allocation strategies manage to achieve complete sub-mesh recognition 

capability but at the expense of high processor fragmentation. On the other hand, most 

existing non-contiguous allocation strategies suffer from several problems that 

include internal fragmentation, external fragmentation, and message contention inside 

the network. Also, most existing non-contiguous allocation strategies do not exploit 

knowledge of the current state of the system (e.g., currently available sub-meshes).  

In this thesis, we propose a new non-contiguous processor allocation strategy for 2D 

mesh connected multicomputers, referred to as A Compacting Non-Contiguous 

Processor Allocation Strategy (CNCPA). The proposed strategy compacts a single job 

into more than one free location within the allocated processors and it is expected to 

improve the system performance in terms of average turnaround time and mean 

system utilization. 
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1.4. Main Contribution 

 

To address the above research interests listed in section 1.2 (motivation section), this 

thesis presents a new non-contiguous allocation strategy that overcome the limitations 

of the existing strategies suggested previously for the 2D mesh networks. 

 

In this research, a new non-contiguous allocation algorithm, referred to as A 

Compacting Non-Contiguous Processor Allocation Strategy (CNCPA for short), for 

the 2D mesh-connected multicomputer is suggested. The CNCPA strategy combines 

the desirable features of both contiguous and non-contiguous allocation. For example, 

the desirable features of contiguous allocation include the elimination of the 

communication overhead between processors allocated to a parallel job, and 

achieving complete sub-mesh recognition capability. The desirable features of non-

contiguous allocation are reducing processor fragmentation. Moreover, CNCPA is 

general enough in that it could be applied to either the 2D or 3D mesh. However, for 

the sake of the present discussion, the new non-contiguous allocation strategy is 

adapted for the 2D mesh in order to compare its performance against that of the 

existing non-contiguous allocation strategies suggested for the 2D mesh; it is worth 

pointing out that there has been hardly any non-contiguous allocation strategy which 

has been suggested for the 3D mesh network. 

 

The proposed CNCPA strategy relies on a new approach that compacts a single job 

into more than one free locations within the allocated processors, where the remaining 

available processors (free processors) form a large sub-mesh in the system, and 

maintains a higher degree of contiguity among sub-meshes than that of the previous 

non-contiguous allocation strategies [10, 29, 39]. This decreases the number of sub-

meshes allocated to a job, hence the distance traversed by messages is decreased, 

which in turn decreases the communication overhead. Our simulation results indicate 

that CNCPA has better performance in terms of the turnaround time than the previous 

non-contiguous allocation strategies proposed in [29]. CNCPA is able to eliminate 

internal as well as external fragmentation from which several previous allocation 

strategies suffer. 
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1.5. Thesis Structure 

 

The remainder of the thesis is organized as follows. Chapter 2 describes some non-

contiguous allocation strategies that have been proposed for mesh-connected 

multicomputers and presents the system model assumed in this research. A list of 

assumptions used in this research is also provided. Finally, the chapter justifies the 

selection of simulation as a study tool and describes the method of study used in this 

research.  

 

Chapter 3 introduces A Compacting Non-Contiguous Processor Allocation Strategy 

as a new non-contiguous allocation algorithm for 2D mesh-connected 

multicomputers, and discusses the main features of the proposed strategy. 

 

Chapter 4 discuses and analyzes the simulation experiments were carried out in order 

to evaluate the performance of the proposed strategy and compare it against existing 

well-known non-contiguous allocation strategies. 

 

Chapter 5 summarizes the main results presented in this research and outlines possible 

directions to continue this work in the future. 
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Chapter 2 

 
Related work 

 
The main objective of this chapter is to describe some of the existing non-contiguous 

allocation strategies that have been proposed in the literature [10, 12, 18, 26, 29, 36, 

39, 53, 54] for 2D mesh networks. 

 

2.1. Related Non-Contiguous Allocation Strategies 

 

Non-contiguous allocation allows jobs to be executed when the number of available 

processors is sufficient [10, 29, 40, 46]. Some of the non-contiguous allocation 

strategies that have been suggested in the literature are described below. 

Random: Random allocation is a straightforward strategy in which a request for a 

given number of processors is satisfied with a number of processors selected 

randomly [29]. Both internal and external fragmentations are eliminated since all jobs 

are assigned exactly the requested number of processors, if available. Because no type 

of contiguity is enforced in this strategy, high communication interference amongst 

jobs would be expected [29, 39]. 

Greedy-Available Busy List Allocation Strategy (GABL): In this strategy [29], 

when a parallel job is selected for allocation, a sub-mesh suitable for the entire job is 

searched. If such a sub-mesh is found, it is allocated to a parallel job and allocation is 

done. Otherwise, the largest free sub-mesh that can fit inside S( ) is allocated, 

where  and  are the dimensions of the job request. Then, the largest free sub-mesh 

whose side lengths do not exceed the corresponding side lengths of the previous 

allocated sub-mesh is searched under the constraint that the number of processors 

allocated does not exceed . This last step is repeated until  processors are 

allocated. For example, given the system state shown in Figure 2.1 and a job that 

requests the allocation of an 8 × 2 sub-mesh, contiguous allocation is not possible and 

non-contiguous allocation is adopted. The job is allocated the sub-meshes (0, 0, 5, 1) 

and (2, 2, 3, 3) as follows. Firstly, the algorithm subtracts one from the maximum 
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length of the side lengths of the job request resulting in 7 × 2 sub-mesh which is not 

available for allocation in the mesh system. So the subtraction process is repeated 

again resulting in a 6 × 2 sub-mesh which is available for allocation in the mesh 

system, so that the sub-mesh (0, 0, 5, 1) is allocated to the job request. Then, the 

algorithm tries to allocate a sub-mesh whose side lengths do not exceed the 

corresponding side lengths of the previous allocated sub-mesh (6 × 2) if this does not 

result in allocating more processors than the original allocation request (8 × 2); in this 

example, [(6 × 2) + (6 × 2)] > (8 × 2). The algorithm subtracts one from the maximum 

lengths of 6 × 2 resulting in 5 × 2, but again [(6 × 2) + (5 × 2)] > (8 × 2). So the 

subtraction process is repeated again until it gets a sub-mesh whose processors, along 

with the processors of the previous allocated sub-mesh, are less than or equal the 

number of processors requested by the original request (8 × 2). In this case, a 2 × 2 

sub-mesh results from the subtraction process which is available in the mesh system 

so that the sub-mesh (2, 2, 3, 3) is allocated to the job request. 

 

Allocated node

Free nodeb2

b3

b1

b4

 
Figure 2.1: A 6 × 6 sub-mesh with 19 free processors forming several free sub-meshes [29] 

 

Allocated sub-meshes are kept in a busy list. Each element in this list includes the id 

of the job to which the sub-mesh is allocated. When a job departs the system its 

allocated sub-meshes are removed from the busy list and the number of free 

processors is updated. Allocation in GABL is implemented by the algorithm outlined 

in Figure 2.2, while the de-allocation algorithm is outlined in Figure 2.3. Note that 

allocation always succeeds if the number of free processors is   . Moreover, it 

can be noticed that the methodology used for maintaining contiguity is greedy. GABL 

attempts to allocate large sub-meshes first. 
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Procedure GABL_Allocate (α, β): 

Begin { 

              Total_Allocated = 0 

            Job_Size =  

         Step1. If (number of free processors < Job_Size) 

                   return failure. 

        Step2. If (there is a free S(w, l) suitable for S(α, β)) 

     { 

                 allocate it using the TBL contiguous allocation algorithm. 

                 return success. 

    } 

        Step3. αnew = α and βnew = β 

       Step4. Subtract 1 from max (αnew, βnew) if max > 1 

      Step5. If (Total _allocated + αnew × βnew > Job_Size) go to step 4 

     Step6. If there is a free S (w, l) suitable for S(αnew, βnew) 

   { 

              Allocate it using TBL contiguous allocation algorithm. 

             Total_allocated = Total_allocated + αnew × βnew 

  } 

   Step7. If (Total_allocated == Job_Size) 

            return success. 

           else 

           go to Step 5. 

} End. 

 

Figure 2.2: Outline of the Greedy Available Busy List allocation algorithm 

 

 

Procedure GABL_De-allocate (): 

Begin { 

            jid = id of the departing job; 

          For all elements in the busy list 

         if (element’s id = jid) 

       remove the element from the busy list 

} End. 

Figure 2.3: Outline of the Greedy Available Busy List de-allocation algorithm 
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Paging Strategy: In this strategy [30], the entire 2D mesh is divided into pages that 

are square sub-meshes with equal side lengths of (2size_index), where size_index is a 

positive number. A page is the allocation unit. The pages are indexed according to 

several indexing schemes (row-major, shuffled row-major, snake-like and shuffled 

snake-like indexing), as shown in Figure 2.4. An ordered list is used to keep track of 

all unallocated pages. The pages are sorted in the increasing order of their order 

indices, assigned by the indexing scheme. Each entry in the list contains the 

corresponding page’s row and column indices, and the page’s order index. The 

number of pages a job requests is computed as: [29, 38]. 

 

….....................................…………………………… (2.1) 

 

where Psize is the size of the page, and and are the side lengths of the requested 

submesh. If the number of free pages is greater than or equal to Prequest , the first 

Prequest unallocated pages are removed from free list and allocated to the requesting 

job. When a job is de-allocated, pages occupied by it are merged back into the free 

page list. A paging strategy is denoted as Paging (size_index). For example, Paging(2) 

means that the pages are sub-meshes. 

 

Paging suffers from internal fragmentation when size_index > 0. The internal 

fragmentation of running jobs is given by: 

 

 …………………………… (2.2) 

 

where Lost_ Processors is for a parallel job that requests Job_Size processors, but is 

allocated Number_of_Allocated_Pages . It is calculated using: 

Lost_ Processors = Number_of_Allocated_Pages x Psize - Job_Size   ....……… (2.3) 

 

To illustrate this, consider a paging strategy with size_index = 1, and suppose a 

parallel job requests the allocation of a   sub-mesh. When allocation is carried 

out for the job it is allocated 3 pages (12 processors). Since only 9 processors are 

needed there is an internal fragmentation of 25%. 
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1 2 30

7654

8 9 10 11

15141312

 

1 4 50

7632

8 9 12 13

15141110

 

(a) (b) 

1 2 30

4567

8 9 10 11

12131415

 
1 4 50

6723

12 13 8 9

10111415

 

(c) (d) 

 

Figure 2.4 : Paging(0) using different indexing schemes: (a) Row-major indexing, (b) 

Shuffled row-major indexing, (c) Snake-like indexing, and (d) Shuffled snake-like indexing 

 

In this research, only the row-major indexing scheme is considered because the 

remaining indexing schemes exhibit only a slight impact on the performance of 

paging, as revealed in [29]. The Paging allocation and de-allocation algorithms are 

presented in Figures 2.5 and 2.6, respectively [29, 39]. 

 

// Page_Side =2size_index; Psize = Page _ Side X Page _ Side 

// The parameter jid is the id of the job that is being considered for allocation 

// α and β are the side lengths of the job’s allocation request 

Procedure Paging_Allocation (jid, α, β) 

Begin { 

 Job_Size =  

 

 // Allocation: 

 Step1. if (number of free pages < Prequest ) return failure else go to step 2 
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 Step2. allocate the first Prequest pages from the list of unallocated pages to    

  the job, setting the IDs of these pages to jid, and return success. 

} End 

 

Figure 2.5: Outline of the Paging allocation algorithm 

 

 

// jid: id of departing job; 

Procedure Paging_De-allocation (jid): 

Begin { 

 for all allocated pages 

 if (page’s id == jid) 

 de-allocate the page and add it to the list of unallocated pages 

} End 

 
Figure 2.6: Outline of the Paging de-allocation algorithm 

 

Multiple Buddy Strategy (MBS): In this strategy [29], the mesh is divided into non-

overlapping square sub-meshes with side lengths equal to powers of 2 upon 

initialization. MBS maintains free block records (FBR) for all free processor squares 

of the same size. The entry FBR[ i ] contains the number of available squares of size 

2i x 2i , and an ordered list of the locations of these squares. The number of 

processors, p , requested by an incoming job is represented as a base 4 number of the 

following form: 

 

 
 






p

i

ii
id

4log

0

22

 
.................................................................…………………..…….. (2.4) 

where 30  di . This strategy attempts to satisfy every term i in the request with di 

free processor blocks of sizes equal to 2i x 2i processors using FBR. If a required 

block is unavailable, MBS searches for a larger block in FBR and repeatedly breaks it 

down into 4 adjacent buddies until it produces blocks of the desired size. The 4 

buddies of a 2j x 2j block are 2j-1 x 2j-1 blocks. If that fails, MBS breaks the request for 

a 2i x 2i block into 4 smaller requests for 2i-1 x 2i-1 blocks and repeats the allocation 

process. In this algorithm, allocation always succeeds when the number of free 
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processors in the mesh system is sufficient. This is because the request, or parts of it, 

can be partitioned into requests for blocks. 

 

Adaptive Non-contiguous Allocation (ANCA): This strategy [10] aims to reduce the 

effects of the fragmentation problem. ANCA first attempts to allocate a job 

contiguously. When contiguous allocation fails, it breaks a job request into two equal 

size sub-frames (sub-requests). For example, an 8 X 3 request is partitioned into two 

4X3 sub-requests. These sub-requests are then allocated available sub-meshes, if 

possible. Otherwise, each of these sub-requests is broken into two equal size sub-

requests, and then ANCA tries to assign all sub-frames to available locations and thus 

take advantage of non-contiguous allocation, and so on. This process terminates if 

allocation succeeds for all sub-requests, or it has repeated a specified number of 

times. Moreover, allocation fails if a side length of the sub-requests reaches 1, which 

can cause external fragmentation [10, 29, 39]. Simulation results in [50] show that 

ANCA is inferior to the allocation strategies, GABL, MBS, and Paging, and that these 

strategies, GABL, MBS, and Paging, have the best performance results, expressed in 

terms of the average turnaround time and mean system utilization performance 

parameters; therefore we do not consider ANCA strategy in this research. 

 

Adaptive Scan and Multiple Buddy (AS&MB): AS&MB is a hybrid strategy [26]. 

Firstly, it attempts to allocate a job contiguously using the adaptive scan strategy [23]. 

When the adaptive scan strategy fails to allocate a job request, it employs the non-

contiguous allocation strategy MBS [29] for allocation. Simulation results in [25] 

show that the performance of AS&MB is almost identical to that of MBS [29] in 

terms of average turnaround time and average service time (i.e., the average time it 

takes for jobs to execute once allocated to processors in the mesh system). However, 

the shorter stride distance in AS increases the allocation time and hence AS&MB is 

not suitable for large meshes; therefore we do not consider it in this research [25, 26, 

29, 39]. 

 

Paging variants: In addition to the four indexing schemes considered in [29], the 

Hilbert and H-indexing space-filling curves have been proposed for ordering 

processors [12]. In these studies, different page selection heuristics have been used. 

Given a request for allocating p processors, an attempt is first made to find a set of at 
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least p consecutive free processors. If this fails, the set of p processors with the 

smallest range of processor ranks is allocated to the request. The algorithm that looks 

for the consecutive free processors is First Fit if it looks for the first large enough set, 

and it is Best Fit if it looks for the smallest one that is large enough for the request. 

The snake-like, Hilbert and H-indexing orderings, when used with First Fit and Best 

Fit consecutive set selection, have been evaluated using simulation [12]. They have 

also been compared to a strategy that minimizes the average pair wise distance 

between the processors allocated to a request (see Gen-Algorithm in [12]). The results 

have shown that the Gen-Algorithm performs relatively poorly, and the relative 

performance of the strategies depends on the communication pattern used. 

 

In the above non-contiguous allocation strategies, the random strategy ignores the 

contiguity of processors allocated to a job, leading to increases in communication 

delays. In GABL [39], the allocation is based on available processors, regardless of 

their position in the mesh system which may allocate a job to sub-meshes that are far 

apart from each other in the mesh system which may increases the communication 

overhead and thus affect the performance in terms of turnaround time. In Paging, 

there is some degree of contiguity because of the indexing schemes used. Contiguity 

can also be increased by increasing the parameter size_index. However, there is 

internal processor fragmentation for size_index > 1 , and it increases with size_index 

[29]. An issue with MBS is that it may fail to allocate a contiguous sub-mesh, 

although one exists. For example, if a job requests the allocation of 16 processors in 

the mesh system shown in Figure 2.7. Initially, the request is factorized as  

number, but because there are no  or larger free blocks the request is partitioned 

into 4 requests for blocks. The 4 lightly-shaded non-contiguous  blocks 

shown in this figure may be assigned to the request although a large enough single 

contiguous free sub-mesh , denoted in the figure by a dashed rectangle, is 

available. We can notice from the figure that communication between processors 

belonging to blocks assigned to this job can interfere with the communication of other 

jobs. In fact, contiguous allocation is explicitly sought in MBS only for requests with 

sizes of the form 22n , where n is a positive integer. As for ANCA, it can disperse the 

allocated sub-meshes more than is necessary. It requires that allocation to all sub-

frames occur in the same partitioning and allocation iteration, skipping over the 
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possibility of allocating larger sub-meshes for a large part of the request in a previous 

iteration. Moreover, ANCA halts the partitioning and search processes when a side 

length reaches 1, which can cause external fragmentation. In the Paging variant that 

uses size_index = 0 , the unit of allocation is a single processor, whereas it can be 

larger in MBS [29] and ANCA [10]. Any processor allocation strategies like Paging 

variants that operate at this level of granularity (i.e., a single processor) requires a 

long time to reach the allocation decision [54]. For large machines such as IBM 

BuleGene/L, allocation strategies that take a reasonable time for allocation and de-

allocation operations were proposed [54]. It is to avoid low allocation granularity that 

the allocation unit in the IBM BlueGene/L, for example, is the mid plane, which is an 

 three-dimensional page [54]. Therefore, the time that the allocation and de-

allocation operations take can be reasonable. The drawback with this approach to 

solving the granularity problem is that internal processor fragmentation can be high. 

A job requests 16 

processors
Allocated node

Free node

Allocated to request

Figure 2.7: An 8 × 8 2D mesh receiving an allocation request for 16 

processors in MBS strategy [39] 

 

2.2. System Model 

 
The interconnection network topology describes the way in which the nodes in the 

network are connected and can be described using an interconnection graph. The 

vertices of this graph are the nodes while the edges are the physical channels that 

connect the nodes [1, 14, 39, 52]. The network diameter, node degree, and network 

degree are often used to characterize a given topology [1, 14, 39]. The diameter is the 

maximum value of the shortest path lengths between any two nodes. The node degree 

is the number of links connecting a node to its neighbours while the network degree is 
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the maximum node degree in the network. Many interconnection network topologies 

have been suggested for parallel computers, such as the hypercube [3, 26] and the 

mesh [1, 3, 51]. In a hypercube with d dimensions we have N = 2d nodes each of 

degree d. The hypercube topologies have many advantages and one of these 

advantages is its small diameter. However, a main defect of the hypercube network is 

its lack of scalability, which limits its use in constructing large-size multicomputers 

[3]. But the scalability and modularity are important parameters of an interconnection 

network of a multicomputer system. Scalable networks have the property that the size 

of the system (i.e., the number of communicating nodes) can be increased with minor 

or no change in the existing configuration [3]. Also, It is expected that the increase in 

the size of the system that leads to an increase in performance to the extent of the 

increase in size. [3]. The lack of scalability of the hypercube stems from the fact that 

the node degree is not bounded and varies by the number of processors in the system ( 

N ). This property makes the high cost for a large hypercube N [3, 51]. 

 

Motivated by the above observations, a mesh interconnection network is assumed in 

this research as the network topology. Mesh networks are easily implemented because 

of the simple regular connection and small number of links per node. Because of the 

constant node degree, the mesh network is highly scalable. Moreover, the mesh has 

been widely used in practical multicomputers because it has many advantages such as 

scalability, structural regularity, simplicity, ease of implementation, and its ability of 

partitioning [3, 4, 10, 13, 17, 28, 29, 30, 31, 46, 49, 55]. 
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2.2.1. Switching Method 

The method of switching determines the way messages are handled as they travel 

through intermediate nodes. Switching takes place in the router and consists of the 

receipt of a message, determining the appropriate output channel, and then sending 

the message through this channel. There are many switching methods, which the three 

most important ones are store-and-forward [53], virtual cut-through [8] and 

wormhole switching [6, 8, 10, 29, 52].  

 Store-and-forward switching: In this method, the message is divided into 

fixed-length packets that are routed from source to destination. Each packet 

contains a header that contains the data needed for packet forwarding. A 

packet is completely stored in each intermediate node before it is forwarded to 

the next node along its path to the destination. This switching method has two 

major disadvantages: it requires a large buffer to store entire packets and the 

time to transmit a message is directly proportional to the distance between the 

source and destination nodes [35].  

 Virtual cut-through switching: This method [8, 29] has been introduced as 

an enhancement to Store-and-forward switching in order to reduce the 

transmission time. The network latency, especially under low and moderate 

traffic loads, is noticeably reduced as blocked messages are removed from the 

network and the channels are simultaneously utilized to transmit unblocked 

messages. However, the nodes must provide sufficient buffer spaces for all 

blocked messages passing through it and multiple messages may become 

blocked simultaneously, so a very large buffer space is required at each node. 

Therefore, virtual cut-through might be costly to implement due to the high 

buffer requirement which also has a strong adverse effect on the router speed 

and on the cost and the size of multicomputer system [24, 31, 39].  

 Wormhole switching: The drawback of virtual cut-through has encouraged 

researchers to use of its variant wormhole switching. Wormhole switching has 

been widely used in practical multicomputers [8, 24] because of its low 

buffering requirement and good performance. Experimental results in [35] 

have revealed that network latency in wormhole-switched networks is almost 

independent from message distance in the absence of message contention for 
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network resources (buffers and channels). In this method, the message is 

divided into a fixed length units, called flits (containing typically a few bytes) 

and the buffer are expected to store only few flits and not the entire message. 

A flit is the smallest unit of data transmission in a wormhole routing network. 

The header flit, which contains the routing information, establishes the path 

through the network while the remaining data flits follow it in a pipelined 

fashion. If a channel transmits the header of a message, it must transmit all the 

remaining flits of the same message before transmitting flits of another 

message. If the header cannot be routed in the network due to contention for 

resources, the data flits stop moving and remain spread across the channels 

where they are, keeping all allocated channels and buffers occupied. As a 

result, they prevent other messages from using these channels, and this in turn 

leads to chained blocking in the network with the possibility of serious 

performance degradation under moderate and heavy loads [1]. One common 

solution to this problem, especially in meshes, is to force the messages to pass 

through pre-ordered channels so that a blocking chain can be avoided [1]. 

Since wormhole routing uses pipelined transmission, it can perform well even 

in high diameter networks, such as the mesh. Many experimental machines, 

such as the MIT J-machine [33] and the iWARP [9]; and commercial ones 

such as the Cray T3D, and the IBM BlueGene/L [4, 5, 11] have used 

wormhole switching. This switching method is used in this research and we 

have limited ourselves to wormhole switching because it has been used in the 

existing non-contiguous allocation strategies [25, 26, 29, 39, 42, 44]. 

 

2.2.2. Communication Patterns 

 

When the processors allocated to a parallel job, the messages exchanged among the 

allocated processors according to a specific communication pattern [29, 39]. When 

non-contiguous allocation is used, we are concerned in measuring message contention 

that results from exchanging messages and its effects on overall system performance. 

Three communication patterns have been considered in this research work in order to 

evaluate the performance of the proposed non-contiguous allocation algorithm. In the 

one-to-all communication pattern, a randomly selected processor sends a message to 
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all other processors allocated to the same job. In near neighbor communication 

pattern, the processors allocated to a job are mapped to a virtual two-dimensional 

array of a size that is equal to the job’s allocation request, each of these processors 

communicates with its virtual neighbors. In the random communication pattern, 

randomly selected processors send messages to randomly selected destinations within 

the set of processors allocated to the same job. These three communication patterns 

were used in previous related studies [25, 26, 29]. 

 

2.3. Assumptions 

In the following chapters, extensive simulation results will be presented to evaluate 

the performance of our proposed non-contiguous allocation strategy. In this research, 

we make the following assumptions which have been commonly used in the literature 

[10, 17, 18, 19, 23, 25, 26, 29, 30, 31, 37, 40, 41, 42, 43, 44, 45, 46, 49, 50, 55].  

 

 The inter-arrival times of jobs are independent and follow an exponential 

distribution. 

 Jobs are scheduled on a First-Come-First-Served (FCFS) basic. 

 The side lengths of the sub-meshes requested by jobs are generated 

independently and follow a given probability distribution. Two distributions 

have been considered in this research. The first is the uniform distribution over 

the range from one to the mesh side length. The second one is the uniform-

decreasing distribution, that is based on four probabilities p1 , p2 , p3 , and p4 

and three integers l1, l2, and l3, where the probabilities that the width/height 

of a request falls in the ranges [1, l1], [l1 + 1, l2],  [l2 + 1, l3], and [l3 + 1, L] 

are p1, p2, p3, and p4, respectively. The side lengths within a range are 

equally likely to occur. 

 Messages are transmitted inside the network using wormhole switching along 

with XY routing [1, 8, 39, 40, 41, 52]. 
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2.4.  The Simulation Tool (ProcSimity Simulator) 

This section contains a short description of the ProcSimity simulation tool [37]. This 

tool is discrete-event simulation software [2] that has been developed as a research 

tool in the area of processor allocation and job scheduling in multicomputers [37]. 

ProcSimity was developed at the University of Oregon [37]. The language used for 

writing this software was the C programming language and the ProcSimity has been 

extensively used for processor allocation and job scheduling in mesh-connected 

multicomputers [23, 25, 27, 29, 37, 42]. This is because it is a open-source and 

includes detailed simulation of important operations of multicomputer networks [37]. 

The general purpose of the ProcSimity is to provide a suitable environment for 

performance analysis of processor allocation and job scheduling algorithms. 

Especially, ProcSimity was designed to study some of the problems of processor 

allocation, such as fragmentation and communication overhead problems [23, 25, 29, 

37, 42].  The architecture modeled by ProcSimity consists of a network of processors 

connected to each others through message routers. Adjacent nodes are connected by 

bidirectional communication links, and messages can be sent either by store-and-

forward or wormhole switching. The ProcSimity supports both the mesh and k-ary n-

cube interconnection network topologies with dimension-ordered routing [37, 29]. 

The ProcSimity simulator specifies the target machine environment, including the 

network topology, routing, and flow control mechanism, and it involves the selection 

of a scheduling and an allocation algorithm from a set of provided algorithms. Also, 

third-party scheduling and allocation strategies can be integrated into ProcSimity. 

ProcSimity also involves determining the simulation experiments; it supports both 

stochastic job streams as well as communication patterns from actual parallel 

applications. In this tool, the user can specify the detailed simulation of message-

passing overhead at the flit level [37, 39]. When ProcSimity simulates a mesh-

connected multicomputer, independent user jobs that arrive at the system, request sub-

meshes of free processors. If the number of free processors in the mesh system is not 

enough to satisfy the job request, or there are other waiting jobs in the queue, the job 

is diverted to the waiting queue. The job which is to be executed is selected from the 

waiting queue based on the underlying scheduling strategy, and then the processor 

allocation algorithm determines and allocates the set of processors on which the job 

will execute. The allocated processors may be contiguous or non-contiguous based on 
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the allocation strategy used. When a job is allocated a set of processors, it runs there 

to completion. It may not be moved to other locations during execution [23, 25, 29, 

37, 42]. Once a job departs from the system the sub-meshes it is allocated are freed 

for use by another incoming job.  

 

2.5.  Justification of the Method of Study 

 
In this research we choose ProcSimity simulator as a tool of study. So, we will discuss 

briefly the reasons of choosing this tool in this study, and further provides information 

on the techniques used to reduce the opportunity of simulation errors. After some 

consideration, simulation has been selected as the method of study in this research. 

Generally and in addition to conducting measurements on a real practical system or 

test bed, there exist two techniques for system performance evaluation: analytical 

modeling and simulation [39]. One of the key considerations when adopting a given 

evaluation technique is the level of the desired accuracy. In general, analytical models 

have often low requirements in terms of computation costs, but they often rely on 

many assumptions and simplifications that restrict their applicability to a limited 

number of scenarios. On other hand, simulation models can easily incorporate details 

to the desired level of accuracy in order to mimic more closely the behavior of the real 

system. The consequence of this is that simulations often require a longer time to 

develop and run the code, compared to analytical modeling. However, as we have 

used the ProcSimity simulator that has already been developed and extensively 

validated [37, 39], we have easily incorporated our suggested algorithm into the 

simulator. This has helped to significantly reduce development time and debugging of 

the code. The cost along with the ease of being able to change configurations is the 

main motivation for developing simulations for expensive systems, such as 

multicomputers. The processor allocation algorithm designed and analyzed in this 

study is for mesh-connected multicomputers, which could consist of a large number 

of processors. Such a study could not be easily carried out on a practical system, as 

the experimental setup would require substantial and expensive resources.  

ProcSimity has been widely used to evaluate the performance of processor allocation 

algorithms suggested for 2D mesh-connected multicomputers. Taking into account the 

modifications to the simulator, special care has been taken to ensure that the algorithm 
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implemented would function as designed and that the simulator would not exhibit 

unwanted side-effects. This has been achieved by carrying out the validation of the 

simulator for a number of cases and compared the performance results obtained for 

some-well known strategies against those obtained by other researchers using another 

simulator [19].  
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Chapter 3 

 
A Compacting Non-Contiguous 

Processor Allocation Strategy for 2D 

Mesh-Connected Multicomputers 

3.1. Introduction 
 
Most existing allocation strategies [4, 15, 18, 19, 23, 30, 44, 45, 55] proposed for 

mesh-connected multicomputers are based on contiguous allocation, where the 

processors assigned to a parallel job are physically contiguous and have the same 

topology as that of the interconnection network of the multicomputer. In contiguous 

allocation, jobs are allocated distinct contiguous processor sub-meshes for the 

duration of their execution. Contiguous allocation strategies often result in high 

processor fragmentation, leading to degradation of the system performance in terms of 

average turnaround time of jobs and mean system utilization [55]. The main goal of a 

any processor allocation strategy is to reduce the job turnaround time and to maximize 

the system utilization by reducing the problem of processor fragmentation. Several 

studies have attempted to reduce processor fragmentation [10, 17, 23, 29, 31, 46]. One 

of the proposed solutions is to adopt non-contiguous allocation [10, 25, 26, 29, 40]. In 

non-contiguous allocation, a job can be executed on multiple disjoint smaller sub-

meshes rather than waiting until a single sub-mesh of the requested size becomes 

available. Although non-contiguous allocation increases message contention inside 

the network, dropping the contiguity condition can reduce processor fragmentation 

and increase system utilization [10, 29, 40].  

 

Most existing studies have been performed in the context of contiguous allocation 

[15, 36, 55]. There has been relatively very little work on non-contiguous allocation. 

Although contiguous allocation eliminates contention among the messages of 

concurrently executing jobs, non-contiguous allocation can eliminate processor 

fragmentation that contiguous allocation suffers from. In addition, most existing 
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research on contiguous and non-contiguous allocation has been carried out in the 

context of the 2D mesh [10, 17, 18, 26, 29, 31, 36, 46, 55].  

 

The existing non-contiguous allocation strategies suggested for the 2D mesh suffer 

from several problems that include internal fragmentation, external fragmentation, 

and message contention inside the network [10, 25, 26, 29]. Furthermore, allocation 

of processors to job requests is not based on free contiguous sub-meshes as in [10, 

30]; but rather on artificial predefined geometric or arithmetic patterns. For example, 

in [10] ANCA subdivides job requests into two equal parts, and the subparts are 

successively subdivided in a similar fashion if allocation fails for any of them. In [29], 

MBS strategy bases partitioning on a base-4 representation of the number of 

processors requested, and partitioning in Paging [29] is based on the characteristics of 

the page, which is globally predefined independently from the request. Therefore, 

these strategies may fail to allocate an available large sub-mesh, which affect the 

system performance, such as the turnaround times of jobs [10, 29, 39]. In [39], GABL 

is based on available processors, regardless of their position in the mesh system which 

may allocate a job to sub-meshes that are far apart from each other in the mesh system 

and hence increases the communication overhead that affects the performance in 

terms of jobs turnaround time [39]. Figures 3.1 and 3.2 show an example of a  

2D mesh. In figure 3.1, the job requests a  sub-mesh, and this job request is not 

allocated contiguously because there is no available sub-mesh of size  in mesh 

system. According to the GABL strategy, the job request is divided into two sub-

requests, the first one is , which is allocated to available sub-mesh as shown in 

figure 3.2, and then the second sub-request  is allocated in another sub-mesh 

[39]. 

A job requests 5X1 

submesh

 

Figure 3.1: A job requests 5X1 2D sub-mesh in 4X4 mesh 
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A job request is divided into 

two sub-requests

 First one :4X1 sub-request 

Second one :1X1 sub-request
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Figure 3.2: A job request 5X1 is divided into two sub-requests in GABL allocation algorithm 

 

Motivated by the above observations, this chapter makes the following contributions. 

We describe a new non-contiguous allocation strategy, referred to here as A 

Compacting Non-Contiguous Processor Allocation Strategy for 2D Mesh-Connected 

Multicomputers (CNCPA for short), for the 2D mesh, and compare its performance 

properties using detailed simulations against those of the previous non-contiguous 

allocation strategies GABL, MBS and Paging (0) [39, 54]. These three strategies have 

been selected because they have been shown to perform well in [29, 39].  

The remainder of the chapter is organized as follows. Section 3.2 describes our 

proposed non-contiguous allocation strategy. Finally, Section 3.3 concludes this 

chapter.  



www.manaraa.com

28 

 

3.2. The Proposed A Compacting Non-Contiguous Processor 

Allocation Strategy for 2D Mesh-Connected Multicomputers 

(CNCPA) 
 
The target system is a 2D mesh-connected multicomputer, referred to as M(W, L) , 

where W is the width of the mesh, and L is its length. 

 

In CNCPA strategy, a single job is compacted into more than one free locations within 

the allocated processors, where the remaining available processors (free processors) 

form a large sub-mesh in the mesh system. As a result, the strategy is expected to 

improve the system performance in terms of average turnaround time and mean 

system utilization. 

 

In CNCPA strategy, when a parallel job is selected for allocation, a sub-mesh suitable 

for the entire job is searched. If such a fit sub-mesh is found it is allocated to the job. 

A fit sub-mesh is defined as the sub-mesh where its dimensions are greater than or 

equal to the job dimensions. For example, if dimensions of the job are  and sub-

mesh dimensions are  the relation between the job and sub-mesh should be 

[  and ]. If such a sub-mesh is found it will be allocated to the job. 

Otherwise, the job is divided into two sub-requests where the size of the first sub-

request fits the first available sub-mesh. After that, the strategy searches for the 

second available sub-mesh for the remaining sub-requests where the second available 

sub-mesh should be close to the first one. If the second available sub-mesh is not 

enough for the size of the second sub-request then the remaining job is divided into 

another two sub-requests where the size of the first sub-request fits the available sub-

mesh. This step is repeated until the original job request is allocated. 

 

In order to describe the proposed strategy, we give an example in which we assume a 

job requests a sub-mesh of size . First, check the number of available processors. 

If the available ones are enough then the contiguous allocation algorithm First-Fit [55] 

is used to search for a suitable sub-mesh in order to allocate the first available sub-

mesh, as shown in figures 3.3 and 3.4. 
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A job requests 3X2 

submesh

 
Figure 3.3: A job requests a 3X2 2D sub-mesh in 6X5 mesh 

 

A job requests 3X2 

submesh

 
Figure 3.4: The job is allocated the first available 3X2 2D sub-mesh 

 

Assuming the allocation state in figure 3.5 and the job requests a sub-mesh of size 

. First, contiguous allocation fails because there is no available contiguous sub-

mesh of size  in the mesh system. In this case, our proposed algorithm works as 

the following: the job request is divided into two sub-requests (  and ) 

where the first sub-request is allocated to the first available sub-mesh as shown in 

figure 3.6, and the second sub-request (2 ) is allocated if possible, but because the 

second available sub-mesh that is close to the first one is not enough for the second 

sub-request (2 ), the process is repeated again for the remaining request (2 ) as 

shown in figures 3.6 and 3.7. 

A job requests 3X2 

submesh

 

Figure 3.5: A job requests 3X2 2D sub-mesh in 6X5 mesh but not found it As soon as possible 
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A job is divided into two sub-requests

 First one: 1X2 request 

Second one: 2X2 request 

1X2 

submesh

2X2 

submesh

First 

allocation
 

Figure 3.6: Divide a job request (3X2) in 6X5 mesh, allocate the first sub-mesh 

 

A second sub-request is divided into 

two sub-requests

 First one :1X2 sub-request

Second one:1X2 sub-request
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allocation

1X2 

submesh
1X2 

submesh

1X2 
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Second sub-request
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T
h

ir
d

 

a
llo

c
a

ti
o

n

 
Figure 3.7: Divide a job request (2X2) in 6X5 mesh, allocate the second sub-mesh 

 

Allocation in CNCPA is implemented by the algorithm outlined in Figure 3.8, while 

the de-allocation algorithm is outlined in Figure 3.9. Note that allocation always 

succeeds if the number of free processors is   

 

Procedure CNCPA_Allocate (a , b): 

Begin { 

   no_free_processor = 0 

  Job_Size =  a x b


  Step1. If (no_free_processor < Job_Size) 

  return failure. 

 

 Step 2. If (there is a free sub-mesh S(w, l) suitable for S(a, b)) 

  { 

   allocate it contiguously. 

   update the no_free_processor 

   return success. 

  } 
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  Else go to step 3 

  { 

  Step 3. find any free non-contiguous submesh S(w,l) 

  { 

        count_of_requested_ processor =0 

 

        for each element (processor) in sub-mesh S(w,l) 

           while(count_of_requested_ processor != Job_Size ) 

          { 

                                         count_of_requested_ processor++ 

          add element to the  list 

      

     } 

              } 

 Step 4. allocate the elements in the list to the job request 

     update the no_free_processor 

     return success. 

        } 

 

 } End. 

 
Figure 3.8: The Compaction Non-Contiguous Processor allocation algorithm 

 

 

Procedure CNCPA_Deallocate (): 

Begin { 
   job_id = id of the departing job; 

  For all elements in the mesh  

        if (element’s id = job_id) 

  element states = Idle 

 } End. 

 
Figure 3.9: The Compaction Non-Contiguous Processor de-allocation algorithm 
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Chapter 4 

 
Performance Evaluation 
 

In this chapter, the results of the simulation experiments that have been carried out to 

evaluate the performance of the proposed algorithm are presented and compared 

against those of Paging(0), MBS, and GABL. 

4.1. Allocation and De-allocation Time in CNCPA 
 

When a sub-mesh is allocated, CNCPA takes O(m2) time, where m is the number of 

allocated sub-meshes. The worst case for CNCPA occurs when the free processors 

distributed in distant form (i.e., each one of the allocated sub-meshes for any job 

request equal one processor), and this may increases the distance between 

communicating processors which increases the communication  overhead and thus 

degrades system performance. In such a case, the worst-case time for CNCPA takes 

O(n2), where n is the number of processors in the mesh system. When a job departs the 

system, the de-allocation algorithm takes O(m) time. The proposed algorithm 

maintains a linked list, therefore, its space requirement is in O(m). 

4.2. Simulation Results  
 

In this section, we will show the results for CNCPA and in addition to the results for 

the GABL, Paging(0) and MBS allocation algorithms. We have implemented the 

proposed allocation and de-allocation algorithms, in the C language, and integrated the 

software into the ProcSimity simulation tool that is widely used for processor 

allocation and job scheduling in parallel systems [37, 39]. 

 

The target mesh modeled in the simulation experiments is square with side lengths L. 

Jobs are assumed to have exponential inter-arrival times. They are served on a First-

Come-First-Served (FCFS) basis. We have limited ourselves to FCFS scheduling 

because our main purpose here is to compare the allocation strategies. The execution 
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time of a job is the time it takes to finish communicating. The execution times of jobs 

depend on the time needed for flits to be routed through the node, packet sizes, the 

number of messages sent, message contention and distances messages traverse. Two 

distributions are used to generate the lengths and widths of job requests. The first is 

the uniform distribution over [1, L], where the width and length of a request are 

generated independently. The second is the uniform-decreasing distribution, that is 

based on four probabilities p1 , p2 , p3 , and p4 and three integers l1, l2, and l3, where 

the probabilities that the width/height of a request falls in the ranges [1, l1], [l1 + 1, 

l2], [l2 + 1, l3], and [l3 + 1, L] are p1, p2, p3, and p4, respectively. The side lengths 

within a range are equally likely to occur. The uniform-decreasing distribution 

represents a case where most jobs are small relative to the size of the system. These 

distributions have often been used in the literature [29, 39, 46, 55]. 

 

The interconnection network uses wormhole routing. Flits are assumed to take one 

time unit to move between two adjacent nodes, and  time units to be routed through a 

node. Packet sizes are represented by . Processors allocated to a parallel job 

typically exchange messages with each other using three communication patterns. The 

first communication pattern is one-to-all, where a randomly selected processor sends a 

packet to all other processors allocated to the same job. The second communication 

pattern is random, where a randomly selected processor sends packets to randomly 

selected destinations within the set of processors allocated the same job. The third 

communication pattern is the Near Neighbour communication pattern, where the 

processors allocated to a job are mapped to a virtual two-dimensional array of a size 

that is equal to the job’s allocation request. Each of these processors communicates 

with its virtual neighbours. In the simulation experiments, each communication pattern 

is completed once, and a job remains in the system until it completes one iteration of 

the communication pattern being simulated. In all cases, processors allocated to a job 

are mapped to a linear array of processors using row-major indexing. The simulator 

selects the sources and destinations from this array, and the mapping is used for 

determining the x and y coordinates of the sources and destinations of communication 

operations. Unless specified otherwise, the performance figures shown below are for a 

16 × 16 mesh,  = 3 time units, .  = 8 flits. Also, the results for the uniform-

decreasing side length distribution are based on 1p = 0.4, 2p = 0.2, 3p = 0.2, 4p = 0.2, 
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1l = L /8, 2l = L /4, and 3l = L /2. Simulation parameters are illustrated in Table 4.1. It is 

worth noting that most of the values of these parameters have been adopted in the 

literature [26, 29, 39, 46, 55] and have been recommended in [37]. 

 

Table 4.1: The System Parameters used in the Simulation Experiments 

 

Simulator Parameter Values 

Dimensions of the Mesh Architecture 16 × 16 

Packet Length 8 flits 

Flow Control Mechanism Wormhole Routing 

Buffer Size 1 flit 

Routing Delay 3 time units 

Router Type Mesh XY Routing 

Allocation Strategy CNCPA, GABL, MBS and Paging(0) 

Scheduling Strategy FCFS 

Job Size Distribution 
Uniform, Uniform-decreasing  
 
 

Inter-arrival Time 

Exponential with different values for the 
mean. The values are determined through 
experimentation with the simulator, ranged 
from lower values to higher values. 

Mean Time between Sends 0.0 

Communication Patterns One-to-All, Random, Near Neighbour 

Number of Runs 
 

The number of runs should be enough so 
that the confidence level is 95% that 
relative errors are below 5% of the means. 
The number of runs ranged from dozens to 
thousands. 

Number of Jobs per Run 1000 

 

 

Each simulation run consists of 1000 completed jobs. Simulation results are averaged 

over enough independent runs so that the confidence level is 95% and the relative 

errors do not exceed 5% [2]. The method used to calculate confidence intervals is 

called batch means analysis [1, 37, 39]. In batch means method, a long run is divided 

into a set of fixed size batches, computing a separate sample mean for each batch, and 

using these batches means to compute the grand mean and the confidence interval. In 

our simulation experiments, the grand means are obtained along with several values, 

including confidence interval and relative errors as shown in Table 4.2 which shows 

the grand means, confidence intervals, and relative errors that outline the results 

depicted in Figure 4.1 for the load 0.001 jobs/time unit.  

Table 4.2: The mean (i.e., mean turnaround time of job), 95% confidence interval, and 

relative error for the results shown in Figure 4.1 for the load 0.001 jobs/time unit 
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Algorithm CNCPA GABL MBS Paging(0) 

95% 

Confidence 

Interval 

[242054.873612155- 

264866.327669845] 

[244554.75412416- 

264934.31696784] 

[248133.947848824- 

270974.729659176] 

[244274.925494352- 

266760.483489648] 

Mean (time 

unit) 

253460.600641 254744.535546 259554.338754 255517.704492 

Relative 

Error 

0.045 0.04 0.044 0.044 

 

The main performance parameters used are the average turnaround time of jobs and 

mean system utilization. The turnaround time of a job is the time that the job spends in 

the mesh system from arrival to departure. The system utilization is the percentage of 

processors that are utilized over time. The important independent variable in the 

simulation is the system load. It is defined as the inverse of the mean inte-rarrival time 

of jobs. Its range of values from low to heavy loads has been determined through 

experimentation with the simulator allowing each allocation strategy to reach its upper 

limits of utilization. In the figures that are presented below, the x-axis represents the 

system load while the y-axis represents results of the performance metric of interest 

[39]. 

4.2.1. Turnaround Time: 
 

In Figures 4.1 and 4.2, the average turnaround times of jobs are plotted against the 

system load for the one-to-all communication pattern. The results reveal that CNCPA 

performs better than all other non-contiguous allocation strategies for both uniform 

and uniform-decreasing job size distributions considered in this research. In Figure 

4.1, for example, the differences in performance in favor of CNCPA against GABL, 

MBS, and Paging(0) are respectively as large as 0.5%, 2% and 0.8% when the load is 

0.001 jobs/time unit. 
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Figure 4.1. Average turnaround time vs. system load for the one-to-all communication 

pattern and uniform side lengths distribution in a 16 × 16 mesh.  

 

 

Figure 4.2. Average turnaround time vs. system load for the one-to-all communication 

pattern and uniform-Decreasing.side lengths distribution in a 16 × 16 mesh. 

 

In Figures 4.3 and 4.4, the average turnaround times of jobs are plotted against the 

system load for the near neighbor communication pattern. The results reveal that 

CNCPA performs better than some non-contiguous allocation strategies for both 

uniform and uniform-decreasing job size distributions considered in this research. In 

Figure 4.3, for example, the differences in performance in favor of CNCPA against 

MBS and Paging(0) are respectively as large as 14% and 13% when the load is 0.0089 

jobs/time unit. 
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For GABL, the performance is better than that of other allocation strategies as shown 

in figures 4.3 and 4.4. This is because the distances between communicating nodes are 

relatively low when the near neighbor communication pattern is used. Distances 

between communicating nodes have significant impact on message latency when 

messages are short. This is the case in the simulation scenarios, where the length of 

packets is 8 flits. Also, when the distances traversed by messages are short they are 

less likely to collide with other messages. This in turn decreases the communication 

overhead. As a consequence, the turnaround time is lower.  

 

Figure 4.3. Average turnaround time vs. system load for the near neighbor communication pattern and 

uniform.side lengths distribution in a 16 × 16 mesh  

 

Figure 4.4. Average turnaround time vs. system load for the near neighbor communication 

pattern and uniform-Decreasing.side lengths distribution in a 16 × 16 mesh. 
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In Figures 4.5 and 4.6, the average turnaround times of jobs are plotted against the 

system load for the random communication pattern. Again, The results reveal that 

CNCPA performs better than the non-contiguous allocation strategies for uniform-

decreasing job size distributions considered in this research, but for uniform job size 

distributions the results reveal that CNCPA performs better than some non-contiguous 

allocation strategies, MBS and Paging(0), but the performance for GABL is better than 

that of other allocation strategies including the ones proposed in this research. In 

Figure 4.6, for example, the differences in performance in favor of CNCPA against 

GABL, MBS and Paging(0) are respectively as large as 15%, 4% and 14% when the 

load is 0.18 jobs/time unit. 

 

CNCPA is overall better than some previous non-contiguous allocation strategies at 

alleviating message contention, but contention in the random communication pattern is 

lower than that in the one-to-all and near neighbor communication patterns. This is 

because destinations are chosen randomly and paths are less likely to overlap. 

Contention that results from the random communication pattern is not sufficient for 

differentiating among the non-contiguous allocation strategies. For example, the 

performance of Paging(0) is relatively poor because the distances between nodes are 

relatively high. Distances between communicating nodes have significant impact on 

message latency, independently of contention, when messages are short. This is the 

case in the simulation scenarios, where the length of packets is 8 flits. Also, when 

messages traverse longer distances they are more likely to collide with other messages. 

The increase in contention associated with non-contiguous allocation strategies is 

outweighed by the superior ability of the non-contiguous strategies at allocating free 

processors.  

 

. 
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Figure 4.5. Average turnaround time vs. system load for the random communication pattern 

and uniform.side lengths distribution in a 16 × 16 mesh. 

 

 

 

Figure 4.6. Average turnaround time vs. system load for the random communication pattern 

and uniform-Decreasing.side lengths distribution in a 16 × 16 mesh. 

4.2.2. Utilization:  
 

Figures 4.7 and 4.8 depict the mean system utilization of the allocation strategies 

(CNCPA, GABL, MBS and Paging(0)) for the one-to-all communication pattern. The 

simulation results in these two figures are presented for a heavy system load. The load 

is such that the waiting queue is filled very early, allowing each allocation strategy to 

reach its upper limits of utilization. For uniform job size distribution, all non-
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contiguous allocation strategies achieve a mean system utilization of 70–77%, but in 

Figure 4.8, for uniform-decreasing job size distribution, all non-contiguous allocation 

strategies achieve a mean system utilization of 76–82%. This is because the uniform-

decreasing job size distribution represents the case where most jobs are small relative 

to the size of the mesh system and hence the allocation is more likely to succeed. This 

in turn increases the system utilization. The utilization of the four non-contiguous 

allocation strategies is approximately the same for both job size distributions. This is 

because the non-contiguous allocation strategies, considered in this research, have the 

same ability to eliminate internal and external processor fragmentation. They always 

succeed to allocate processors to a job when the number of free processors is greater 

than or equal the allocation request. 

 

 

Figure 4.7. System utilization of the non-contiguous allocation strategies (CNCPA, GABL, MBS 

and Paging(0)), for the one-to-all  communication pattern tested, and uniform side lengths 

distribution in a 16 x 16 

mesh
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Figure 4.8. System utilization of the non-contiguous allocation strategies (CNCPA, GABL, 

MBS and Paging(0)), for the one-to-all  communication pattern tested, and uniform-

Decreasing side lengths distribution in a 16 x 16 mesh. 

Figures 4.9 and 4.10 depict the mean system utilization of the allocation strategies 

(CNCPA, GABL, MBS and Paging(0)) for the near neighbor pattern. As previously 

reported in Figures 4.7 and 4.8, the simulation results in these two figures are 

presented for a heavy system load. The load is such that the waiting queue is filled 

very early, allowing each allocation strategy to reach its upper limits of utilization. 

For uniform job size distribution, all non-contiguous allocation strategies achieve a 

mean system utilization of 70–78%, but in Figure 4.10, for uniform-decreasing job 

size distribution, all non-contiguous allocation strategies achieve a mean system 

utilization of 73–86%.  

 

Figure 4.9. System utilization of the non-contiguous allocation strategies (CNCPA, GABL, 
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MBS and Paging(0)), for the near neighbor communication pattern tested, and uniform side 

lengths distribution in a 16 x 16 mesh. 

 

Figure 4.10. System utilization of the non-contiguous allocation strategies (CNCPA, GABL, 

MBS and Paging(0)), for the near neighbor communication pattern tested, and uniform- 

Decreasing side lengths distribution in a 16 x 16 mesh. 

Figures 4.11 and 4.12 depict the mean system utilization of the allocation strategies 

(CNCPA, GABL, MBS and Paging(0)) for the random pattern. The simulation results 

in these two figures are presented for a heavy system load. For uniform job size 

distribution, all non-contiguous allocation strategies achieve a mean system utilization 

of 70–78%, but in Figure 4.12, for uniform-decreasing job size distribution, all non-

contiguous allocation strategies achieve a mean system utilization of 73–86%.  

 

 

Figure 4.11. System utilization of the non-contiguous allocation strategies (CNCPA, GABL, 

MBS and Paging(0)), for the random communication pattern tested, and uniform side lengths 
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distribution in a 16 x 16 mesh. 

 

Figure 4.12. System utilization of the non-contiguous allocation strategies (CNCPA, GABL, 

MBS and Paging(0)), for the random communication pattern tested, and uniform- 

Decreasing side lengths distribution in a 16 x 16 mesh. 

4.3. Conclusions 
 

This chapter has investigated the performance merits of non-contiguous allocation in 

the 2D mesh network. To this end, we have suggested a new non-contiguous 

allocation strategy, referred to as A Compacting Non-Contiguous Processor 

Allocation Strategy, referred to as CNCPA, which differs from the earlier non-

contiguous allocation strategies in the method used for decomposing allocation 

requests. The proposed strategy compacts a single job into more than one free location 

within the allocated processors. The major goal of this process is to maintain a high 

degree of contiguity among sub-meshes allocated to a job. This decreases the distance 

traversed by messages, and which in turn decreases the communication overhead and 

hence improves the system performance in terms of average turnaround time and 

mean system utilization. 

 

The performance of CNCPA was compared against that of existing non-contiguous 

allocation strategies using the FCFS scheduling strategy and the one-to-all, random 

and near neighbor communication patterns. Simulation results have shown that 

CNCPA can improve performance for the one-to-all communication pattern despite 

the additional message contention inside the network that results from the interference 
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among the messages of different jobs as compared to the well-known non-contiguous 

allocation strategies such as GABL, MBS and Paging(0). 

For near neighbor communication pattern, the results reveal that CNCPA is overall 

better than that of the previous non-contiguous allocation strategies, MBS and 

Paging(0), but the performance for GABL is better than that of other allocation 

strategies including the ones proposed in this research, CNCPA. This is because the 

distances between communicating nodes are relatively low when the near neighbor 

communication pattern is used. Distances between communicating nodes have 

significant impact on message latency when messages are short. This is the case in the 

simulation scenarios, where the length of packets is 8 flits. Also, when the distances 

traversed by messages are short they are less likely to collide with other messages. 

This in turn decreases the communication overhead. As a consequence, the 

turnaround time is lower. 

For random communication pattern, the results reveal that CNCPA performs better 

than the previous non-contiguous allocation strategies considered in this research for 

uniform-decreasing job size distributions, but for uniform job size distributions, the 

results reveal that CNCPA performs better than some non-contiguous allocation 

strategies, MBS and Paging(0), but the performance for GABL is better than that of 

the other allocation strategies including the ones proposed in this research. 
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Chapter 5 

 
Conclusions and Future Directions 

 
In recent years, parallel computers have become very popular for solving large-scale 

computationally intensive problems [20, 32]. Parallel computers are often considered 

to be one of the most feasible ways of achieving the enormous computational power 

required by many real-life parallel applications found in science, engineering, and a 

number of other fields [26, 39]. Distributed-memory multicomputers are an important 

class of parallel computers for building large-scale parallel systems [52, 39]. Among 

the various distributed-memory multicomputers those based on the mesh network 

have received much attention from the research community due to the simplicity, 

structural regularity, partition-ability, and ease of implementation of this network 

topology [10, 13, 17, 18, 29, 31, 46, 55]. Mesh multicomputers are suitable for 

different applications such as matrix computations, image processing and problems 

whose task graphs can be embedded naturally into the mesh. It has been used as the 

underlying network in a number of commercial and experimental multicomputers, 

including the Tera Computer, Cray T3D, MIT J-Machine and the IBM BlueGene/L 

[5, 38, 39]. 

Processor allocation in distributed-memory multicomputers, especially those based on 

the mesh network, became the subject of much research in recent years [17, 18, 23, 

30, 42]. Several commercial and experimental parallel machines have used space 

sharing for processor allocation [9, 22, 33, 54]. In space sharing, the set of processors 

in a system, e.g., mesh-connected multicomputer, is partitioned into a set of sub-

meshes each of which is exclusively allocated to a single job [21, 39]. Processor 

allocation strategies are divided into two categories: contiguous and non-contiguous. 

In contiguous allocation, jobs are allocated distinct contiguous processor sub-meshes 

for the duration of their execution. Contiguous allocation has the problem of 

processor fragmentation [28, 37, 39, 40, 42, 47, 48]. 
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Processors fragmentation can be classified into internal and external fragmentation. 

Internal fragmentation occurs when more processors are allocated to a job more than 

it requires [10, 29, 50]. When a job is assigned more processors than it requires, the 

extra allocated processors are not used for actual computation, instead they are 

wasted. External fragmentation occurs when a sufficient number of processors are 

available to satisfy a request, but they cannot be allocated contiguously because they 

are not contiguous for example [29].  

 

A number of researchers have adopted non-contiguous allocation to solve the problem 

of processor fragmentation [10, 23, 29], where a job can be executed on multiple 

disjoint sub-meshes rather than waiting until a single sub-mesh of requested size and 

shape is available. In past years, non-contiguous allocation has not attracted 

considerable research attention because the communication latency was sensitive to 

the distance in the network used in the first generation of multicomputers [39]. 

However, the advances in routing technique such as wormhole routing [1, 4, 52] have 

made non-contiguous allocation plausible in networks characterized by long 

diameters such as the mesh. Wormhole routing has been widely adopted in the second 

generation of multicomputers [12, 39]. An advantage of wormhole routing over 

earlier routing schemes, mainly store-and-forward, is that message latency has 

become less dependent on message distance [1, 24]. 

 

The procedure used for partitioning allocation requests in non-contiguous allocation 

has a considerable impact on the performance of non-contiguous allocation strategies 

[10, 29, 40, 41]. Therefore, the process of partitioning in non-contiguous allocation 

should aim to maintain a high degree of contiguity between the sub-meshes allocated 

to a given parallel job. This is so that the communication overhead is kept to a 

minimum without affecting the overall system performance [40, 41]. 
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5.1. Summary of the Results 

 

The main objective of this research has been the development of a new non-

contiguous allocation strategy for mesh-connected multicomputers that overcome the 

limitations of the existing strategies suggested for the 2D mesh networks. Following 

summarizes the main contributions to this research study. 

 
 There have been many non-contiguous allocation strategies that have been 

suggested for the 2D mesh network. However most of these suffer from 

several problems that include internal fragmentation, external fragmentation, 

as well as message contention inside the network [10, 23, 29, 39]. Moreover, 

the allocation of processors to job requests is not based on free contiguous 

sub-meshes in the existing strategies [10, 29, 39]. Instead, it is often based on 

artificial predefined geometric or arithmetic patterns. In [39], GABL is based 

on available processors, regardless of their position in the mesh system which 

may allocate a job to sub-meshes that are far apart from each other in the mesh 

system which increases the communication overhead and thus affects the 

performance in terms of turnaround time [39]. Therefore, these strategies may 

fail to allocate an available large sub-mesh, which in turn can cause 

degradation in system performance, such as the turnaround times of jobs [10, 

29, 39, 40]. Motivated by these observations, this research has suggested a 

new non-contiguous allocation algorithm, referred to as A Compacting Non-

Contiguous Processor Allocation Strategy (CNCPA for short), for mesh-

connected multicomputers. The CNCPA strategy combines the main desirable 

features of both the contiguous and non-contiguous allocation strategies. In 

this research study the new proposed non-contiguous allocation strategy has 

been adapted to the 2D mesh in order to compare its performance against that 

of the existing non-contiguous allocation strategies suggested for the same 

network. 

 

 The proposed CNCPA strategy relies on a new approach that maintains a 

higher degree of contiguity among the sub-meshes than that of the previous 

non-contiguous allocation strategies. This decreases the distance traversed by 
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messages, which in turn decreases communication overhead and as a result 

decreases jobs turnaround time. Extensive simulation experiments under a 

variety of system operating conditions have been carried out to compare the 

performance of the proposed CNCPA strategy against that of the existing non-

contiguous allocation strategies. The results have shown that in most cases the 

new strategy has better performance in terms of the turnaround time than the 

previous non-contiguous allocation strategies of [29]. Moreover, when 

message contention increases inside the network due to using the one-to-all 

communication pattern, for example, CNCPA exhibits performance over the 

previous non-contiguous allocation strategies. For instance, under high loads, 

the differences in performance in favor of CNCPA against GABL [41], MBS, 

and Paging(0) [29] are respectively as large as 0.5%, 2% and 0.8%  for the 

one-to-all communication pattern and uniform side length distribution 

considered in this research. Furthermore, the proposed strategy exhibits high 

system utilization as it manages to eliminate both internal and external 

fragmentation. For instance, under high loads, CNCPA achieves a mean 

system utilization of 70% to 77% under the uniform side lengths distributions, 

but for uniform-decreasing job size distribution, all non-contiguous allocation 

strategies achieve a mean system utilization of 76–82%.  

 

5.2. Directions for the Future Work 

 

There are many interesting questions and open problems that require further 

investigation. From my point of view, the most important one is described below. 

 

 The results in [29, 39] have shown that non-contiguous allocation strategies 

dramatically outperform contiguous allocation strategies for 2D mesh 

network. A Compacting Non-Contiguous Processor Allocation Strategy 

(CNCPA), proposed in Chapter 3 can be applied to 3D mesh network. So, it 

would be interesting to adapt the proposed non-contiguous allocation 

algorithm (CNCPA) to 3D mesh network and investigate its performance 

against that of the contiguous allocation in 3D mesh network.  
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تي من الممكن في التخصيص غير المتجاور، يمكن تجزئة طلب مهمة الى اجزاء اصغر و ال

تخصيصها بشكل غير متجاور في شبكات جزئية فارغة عوضا عن الإنتضار الطويل حتى يتم 

توفر شبكة فرعية متجاورة ومطابقة بالحجم والشكل المطلوبين.  بغض النضر عن شرط 

التجاورية يتوقع تقليل عدد الكسيرات وزيادة إستغلال النظام. ومع ذلك، المسافات المقطوعة من 

الرسائل يمكن ان تكون طويلة. ونتيجة لذلك يتم زيادة مقدارالإتصال على الشبكة، وخاصة  قبل

التزاحم. مقدار الإتصال الزائد يعتمد على كيفية تقسيم طلب التخصيص وحجزه للشبكات الفرعة 

في هذه الدراسة، أقترح سياسة تخصيص غير متجاور جديدة، يشار إليها بـ التخصيص الفارغة. 

غير المتجاور بإستخدام التحشير في متعددات الحواسيب ثنائي الأبعاد. في السياسة المقترحة، 

يتم تحشير المهمة الواحدة في أكثر من مكان متوفر ضمن المعالجات المخصصة، حيث 

تبقية تشكّل في النظام شبكة جزئية كبيرة. لتقييم لتحسين الأداء الذي المعالجات المتاحة والم

حققته السياسة المقترحة ومقارنتها مع سياسات تخصيص غير متجاور معروفه من قبل، فقد 

  (Wormhole routing)أجرينا تجارب محاكاة واسعة النطاق على إفتراض أن عملية التوجيه 

شوائي، والجار القريب. بينت النتائج أن السياسة المقترحه لجميع، ع -وأنماط الإتصال، واحد

ألغت كلا من الكسيرات الداخلية والخارجية و قللت من مقدار الإتصال على الشبكة وبالتالي أدة 

 الى تحسين الأداء من حيث الفترة الزمنية للمهمة وإستغلال النظام.

 


